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where (a) holds because Tc is the union of disjoint subsets �T ∩
Tc and �Tc ∩ Tc, and (b) follows directly from (C.2). Using the
Cauchy-Schwarz inequality, the following can be obtained:
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where (a) holds since
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Combining (C.3) and (C.4), we have
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Since ‖eT‖2 ≤ ‖eT′ ‖2,
�
�
� e(�T∪T)\(�T∩T)

�
�
�

2
≤ ‖eT′ ‖2, and

�
� e�T∩T

�
�

2 ≤ ‖eT′ ‖2, it follows from (C.6) that

‖eTc‖1,B ≤ W3‖eT′ ‖2; (C.6)

It should be noted that (C.6) is similar to (B.16), with the
exception that W1 + W2 is replaced by W3 defined in (4.7).
Now, from (B.9) and (C.6), we obtain
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Under the condition (4.6), it can be deduced from (C.7) that
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According to (B.5) and (C.8), we obtain

‖eT′c‖2 ≤ 1√
as

‖eTc‖1,B ≤ W3√
as

‖eT′ ‖2. (C.9)

The assertion then follows by substituting (C.8) and (C.9)
into (B.4). �

D. Derivation of (4.11)

The performance guarantee of the considered case can be
obtained by going through the proof in Appendix B with the
estimated support chosen to be the empty set, i.e., �T = φ. The
inequality (B.13) can then be simplified to

�

j∈Tc

‖e( j)‖2 ≤
�

j∈T
‖e( j)‖2. (D.1)

As in Appendix B, our purpose is to determine an upper
bound for ‖eTc‖1,B. Following (D.1), we note that
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where (a) holds based on the Cauchy-Schwarz inequality.
Because ‖eT‖2 ≤ ‖eT′ ‖2, it follows from (D.2) that

‖eTc‖1,B ≤ √
s‖eT′ ‖2. (D.3)

It should be noted that (D.3) is similar to (B.17), with the
exception that W1 + W2 is replaced by

√
s. Now, (B.9) and

(D.3) yield
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Under the condition δas + aδ(a+1)s < a − 1, it can be
deduced from (D.4) that

‖eT′ ‖2 ≤ 2ε



1 − δ(a+1)s −
√

1+δas√
a

. (D.5)

From (B.5) and (D.3), we obtain

‖eT′c‖2 ≤ 1√
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a

‖eT′ ‖2. (D.6)

The assertion then follows by substituting (D.5) and (D.6)
into (B.4). �

E. Proof of Theorem 4.5

The Karush-Kuhn-Tucker (KKT) condition associated with
problem (P3) is given by
�
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By some rearrangements of (E.1) we obtain
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To prove part (1), we first consider the case of α = 0, which
implies that μ2 = μ3. The solution can be derived under two
conditions, namely, μ2 = μ3 = 0 and μ2 = μ3 > 0. If μ2 =
μ3 = 0, then μ1 − μ2 = √

s − √
2s < 0, and there is thus no

solution. If μ2 = μ3 > 0 and, in addition μ1 = 0, the solution
is wc = w = 1; otherwise (i.e., if μ1 > 0), we have the contra-
diction of wc = 0, wc = w, and w = 1. In the case of 0 < α <

0.5, the solution can be obtained by a similar procedure. Parts
(2) and (3) can also be similarly proven. �
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F. Proof of Corollary 4.6

From (4.8) and (4.11), it follows that C1 < C2 if and only if

W3/
√

s < 1, (F.1)

which by invoking the definition of W3 in (4.7) and through
some manipulation reads

(1 − wc)



2(1 − α) + (w − wc)
√

α < 1 − wc. (F.2)

Because wc < 1, (F.2) is equivalent to
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By squaring both sides of (F.3) and rearranging, we have
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which yields
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or equivalently,
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The inequality (4.12) can be directly obtained by solving
(F.6). �
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